3.20.85 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^2}{\sqrt {d+e x}} \, dx\) [1985]

Optimal. Leaf size=83 \[ \frac {2 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}{5 e^3}-\frac {4 c d \left (c d^2-a e^2\right ) (d+e x)^{7/2}}{7 e^3}+\frac {2 c^2 d^2 (d+e x)^{9/2}}{9 e^3} \]

[Out]

2/5*(-a*e^2+c*d^2)^2*(e*x+d)^(5/2)/e^3-4/7*c*d*(-a*e^2+c*d^2)*(e*x+d)^(7/2)/e^3+2/9*c^2*d^2*(e*x+d)^(9/2)/e^3

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 83, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.054, Rules used = {640, 45} \begin {gather*} -\frac {4 c d (d+e x)^{7/2} \left (c d^2-a e^2\right )}{7 e^3}+\frac {2 (d+e x)^{5/2} \left (c d^2-a e^2\right )^2}{5 e^3}+\frac {2 c^2 d^2 (d+e x)^{9/2}}{9 e^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2/Sqrt[d + e*x],x]

[Out]

(2*(c*d^2 - a*e^2)^2*(d + e*x)^(5/2))/(5*e^3) - (4*c*d*(c*d^2 - a*e^2)*(d + e*x)^(7/2))/(7*e^3) + (2*c^2*d^2*(
d + e*x)^(9/2))/(9*e^3)

Rule 45

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 640

Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
 IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^2}{\sqrt {d+e x}} \, dx &=\int (a e+c d x)^2 (d+e x)^{3/2} \, dx\\ &=\int \left (\frac {\left (-c d^2+a e^2\right )^2 (d+e x)^{3/2}}{e^2}-\frac {2 c d \left (c d^2-a e^2\right ) (d+e x)^{5/2}}{e^2}+\frac {c^2 d^2 (d+e x)^{7/2}}{e^2}\right ) \, dx\\ &=\frac {2 \left (c d^2-a e^2\right )^2 (d+e x)^{5/2}}{5 e^3}-\frac {4 c d \left (c d^2-a e^2\right ) (d+e x)^{7/2}}{7 e^3}+\frac {2 c^2 d^2 (d+e x)^{9/2}}{9 e^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.05, size = 67, normalized size = 0.81 \begin {gather*} \frac {2 (d+e x)^{5/2} \left (63 a^2 e^4+18 a c d e^2 (-2 d+5 e x)+c^2 d^2 \left (8 d^2-20 d e x+35 e^2 x^2\right )\right )}{315 e^3} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^2/Sqrt[d + e*x],x]

[Out]

(2*(d + e*x)^(5/2)*(63*a^2*e^4 + 18*a*c*d*e^2*(-2*d + 5*e*x) + c^2*d^2*(8*d^2 - 20*d*e*x + 35*e^2*x^2)))/(315*
e^3)

________________________________________________________________________________________

Maple [A]
time = 0.69, size = 68, normalized size = 0.82

method result size
derivativedivides \(\frac {\frac {2 c^{2} d^{2} \left (e x +d \right )^{\frac {9}{2}}}{9}+\frac {4 \left (e^{2} a -c \,d^{2}\right ) c d \left (e x +d \right )^{\frac {7}{2}}}{7}+\frac {2 \left (e^{2} a -c \,d^{2}\right )^{2} \left (e x +d \right )^{\frac {5}{2}}}{5}}{e^{3}}\) \(68\)
default \(\frac {\frac {2 c^{2} d^{2} \left (e x +d \right )^{\frac {9}{2}}}{9}+\frac {4 \left (e^{2} a -c \,d^{2}\right ) c d \left (e x +d \right )^{\frac {7}{2}}}{7}+\frac {2 \left (e^{2} a -c \,d^{2}\right )^{2} \left (e x +d \right )^{\frac {5}{2}}}{5}}{e^{3}}\) \(68\)
gosper \(\frac {2 \left (e x +d \right )^{\frac {5}{2}} \left (35 e^{2} x^{2} c^{2} d^{2}+90 a c d \,e^{3} x -20 c^{2} d^{3} e x +63 a^{2} e^{4}-36 a c \,d^{2} e^{2}+8 c^{2} d^{4}\right )}{315 e^{3}}\) \(73\)
trager \(\frac {2 \left (35 c^{2} d^{2} e^{4} x^{4}+90 a c d \,e^{5} x^{3}+50 c^{2} d^{3} e^{3} x^{3}+63 a^{2} e^{6} x^{2}+144 a c \,d^{2} e^{4} x^{2}+3 c^{2} d^{4} e^{2} x^{2}+126 a^{2} d \,e^{5} x +18 a c \,d^{3} e^{3} x -4 c^{2} d^{5} e x +63 a^{2} d^{2} e^{4}-36 a \,d^{4} e^{2} c +8 d^{6} c^{2}\right ) \sqrt {e x +d}}{315 e^{3}}\) \(151\)
risch \(\frac {2 \left (35 c^{2} d^{2} e^{4} x^{4}+90 a c d \,e^{5} x^{3}+50 c^{2} d^{3} e^{3} x^{3}+63 a^{2} e^{6} x^{2}+144 a c \,d^{2} e^{4} x^{2}+3 c^{2} d^{4} e^{2} x^{2}+126 a^{2} d \,e^{5} x +18 a c \,d^{3} e^{3} x -4 c^{2} d^{5} e x +63 a^{2} d^{2} e^{4}-36 a \,d^{4} e^{2} c +8 d^{6} c^{2}\right ) \sqrt {e x +d}}{315 e^{3}}\) \(151\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/e^3*(1/9*c^2*d^2*(e*x+d)^(9/2)+2/7*(a*e^2-c*d^2)*c*d*(e*x+d)^(7/2)+1/5*(a*e^2-c*d^2)^2*(e*x+d)^(5/2))

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 289 vs. \(2 (69) = 138\).
time = 0.29, size = 289, normalized size = 3.48 \begin {gather*} \frac {2}{315} \, {\left ({\left (35 \, {\left (x e + d\right )}^{\frac {9}{2}} - 180 \, {\left (x e + d\right )}^{\frac {7}{2}} d + 378 \, {\left (x e + d\right )}^{\frac {5}{2}} d^{2} - 420 \, {\left (x e + d\right )}^{\frac {3}{2}} d^{3} + 315 \, \sqrt {x e + d} d^{4}\right )} c^{2} d^{2} e^{\left (-2\right )} + 315 \, \sqrt {x e + d} a^{2} d^{2} e^{2} + 18 \, {\left (5 \, {\left (x e + d\right )}^{\frac {7}{2}} - 21 \, {\left (x e + d\right )}^{\frac {5}{2}} d + 35 \, {\left (x e + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {x e + d} d^{3}\right )} {\left (c d^{2} + a e^{2}\right )} c d e^{\left (-2\right )} + 42 \, {\left ({\left (3 \, {\left (x e + d\right )}^{\frac {5}{2}} - 10 \, {\left (x e + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {x e + d} d^{2}\right )} c d e^{\left (-1\right )} + 5 \, {\left (c d^{2} + a e^{2}\right )} {\left ({\left (x e + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {x e + d} d\right )} e^{\left (-1\right )}\right )} a d e + 21 \, {\left (c d^{2} + a e^{2}\right )}^{2} {\left (3 \, {\left (x e + d\right )}^{\frac {5}{2}} - 10 \, {\left (x e + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {x e + d} d^{2}\right )} e^{\left (-2\right )}\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^(1/2),x, algorithm="maxima")

[Out]

2/315*((35*(x*e + d)^(9/2) - 180*(x*e + d)^(7/2)*d + 378*(x*e + d)^(5/2)*d^2 - 420*(x*e + d)^(3/2)*d^3 + 315*s
qrt(x*e + d)*d^4)*c^2*d^2*e^(-2) + 315*sqrt(x*e + d)*a^2*d^2*e^2 + 18*(5*(x*e + d)^(7/2) - 21*(x*e + d)^(5/2)*
d + 35*(x*e + d)^(3/2)*d^2 - 35*sqrt(x*e + d)*d^3)*(c*d^2 + a*e^2)*c*d*e^(-2) + 42*((3*(x*e + d)^(5/2) - 10*(x
*e + d)^(3/2)*d + 15*sqrt(x*e + d)*d^2)*c*d*e^(-1) + 5*(c*d^2 + a*e^2)*((x*e + d)^(3/2) - 3*sqrt(x*e + d)*d)*e
^(-1))*a*d*e + 21*(c*d^2 + a*e^2)^2*(3*(x*e + d)^(5/2) - 10*(x*e + d)^(3/2)*d + 15*sqrt(x*e + d)*d^2)*e^(-2))*
e^(-1)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 142 vs. \(2 (69) = 138\).
time = 2.59, size = 142, normalized size = 1.71 \begin {gather*} -\frac {2}{315} \, {\left (4 \, c^{2} d^{5} x e - 8 \, c^{2} d^{6} - 63 \, a^{2} x^{2} e^{6} - 18 \, {\left (5 \, a c d x^{3} + 7 \, a^{2} d x\right )} e^{5} - {\left (35 \, c^{2} d^{2} x^{4} + 144 \, a c d^{2} x^{2} + 63 \, a^{2} d^{2}\right )} e^{4} - 2 \, {\left (25 \, c^{2} d^{3} x^{3} + 9 \, a c d^{3} x\right )} e^{3} - 3 \, {\left (c^{2} d^{4} x^{2} - 12 \, a c d^{4}\right )} e^{2}\right )} \sqrt {x e + d} e^{\left (-3\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^(1/2),x, algorithm="fricas")

[Out]

-2/315*(4*c^2*d^5*x*e - 8*c^2*d^6 - 63*a^2*x^2*e^6 - 18*(5*a*c*d*x^3 + 7*a^2*d*x)*e^5 - (35*c^2*d^2*x^4 + 144*
a*c*d^2*x^2 + 63*a^2*d^2)*e^4 - 2*(25*c^2*d^3*x^3 + 9*a*c*d^3*x)*e^3 - 3*(c^2*d^4*x^2 - 12*a*c*d^4)*e^2)*sqrt(
x*e + d)*e^(-3)

________________________________________________________________________________________

Sympy [B] Leaf count of result is larger than twice the leaf count of optimal. 631 vs. \(2 (76) = 152\).
time = 43.42, size = 631, normalized size = 7.60 \begin {gather*} \begin {cases} \frac {- \frac {2 a^{2} d^{3} e^{2}}{\sqrt {d + e x}} - 6 a^{2} d^{2} e^{2} \left (- \frac {d}{\sqrt {d + e x}} - \sqrt {d + e x}\right ) - 6 a^{2} d e^{2} \left (\frac {d^{2}}{\sqrt {d + e x}} + 2 d \sqrt {d + e x} - \frac {\left (d + e x\right )^{\frac {3}{2}}}{3}\right ) - 2 a^{2} e^{2} \left (- \frac {d^{3}}{\sqrt {d + e x}} - 3 d^{2} \sqrt {d + e x} + d \left (d + e x\right )^{\frac {3}{2}} - \frac {\left (d + e x\right )^{\frac {5}{2}}}{5}\right ) - 4 a c d^{4} \left (- \frac {d}{\sqrt {d + e x}} - \sqrt {d + e x}\right ) - 12 a c d^{3} \left (\frac {d^{2}}{\sqrt {d + e x}} + 2 d \sqrt {d + e x} - \frac {\left (d + e x\right )^{\frac {3}{2}}}{3}\right ) - 12 a c d^{2} \left (- \frac {d^{3}}{\sqrt {d + e x}} - 3 d^{2} \sqrt {d + e x} + d \left (d + e x\right )^{\frac {3}{2}} - \frac {\left (d + e x\right )^{\frac {5}{2}}}{5}\right ) - 4 a c d \left (\frac {d^{4}}{\sqrt {d + e x}} + 4 d^{3} \sqrt {d + e x} - 2 d^{2} \left (d + e x\right )^{\frac {3}{2}} + \frac {4 d \left (d + e x\right )^{\frac {5}{2}}}{5} - \frac {\left (d + e x\right )^{\frac {7}{2}}}{7}\right ) - \frac {2 c^{2} d^{5} \left (\frac {d^{2}}{\sqrt {d + e x}} + 2 d \sqrt {d + e x} - \frac {\left (d + e x\right )^{\frac {3}{2}}}{3}\right )}{e^{2}} - \frac {6 c^{2} d^{4} \left (- \frac {d^{3}}{\sqrt {d + e x}} - 3 d^{2} \sqrt {d + e x} + d \left (d + e x\right )^{\frac {3}{2}} - \frac {\left (d + e x\right )^{\frac {5}{2}}}{5}\right )}{e^{2}} - \frac {6 c^{2} d^{3} \left (\frac {d^{4}}{\sqrt {d + e x}} + 4 d^{3} \sqrt {d + e x} - 2 d^{2} \left (d + e x\right )^{\frac {3}{2}} + \frac {4 d \left (d + e x\right )^{\frac {5}{2}}}{5} - \frac {\left (d + e x\right )^{\frac {7}{2}}}{7}\right )}{e^{2}} - \frac {2 c^{2} d^{2} \left (- \frac {d^{5}}{\sqrt {d + e x}} - 5 d^{4} \sqrt {d + e x} + \frac {10 d^{3} \left (d + e x\right )^{\frac {3}{2}}}{3} - 2 d^{2} \left (d + e x\right )^{\frac {5}{2}} + \frac {5 d \left (d + e x\right )^{\frac {7}{2}}}{7} - \frac {\left (d + e x\right )^{\frac {9}{2}}}{9}\right )}{e^{2}}}{e} & \text {for}\: e \neq 0 \\\frac {c^{2} d^{\frac {7}{2}} x^{3}}{3} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**2/(e*x+d)**(1/2),x)

[Out]

Piecewise(((-2*a**2*d**3*e**2/sqrt(d + e*x) - 6*a**2*d**2*e**2*(-d/sqrt(d + e*x) - sqrt(d + e*x)) - 6*a**2*d*e
**2*(d**2/sqrt(d + e*x) + 2*d*sqrt(d + e*x) - (d + e*x)**(3/2)/3) - 2*a**2*e**2*(-d**3/sqrt(d + e*x) - 3*d**2*
sqrt(d + e*x) + d*(d + e*x)**(3/2) - (d + e*x)**(5/2)/5) - 4*a*c*d**4*(-d/sqrt(d + e*x) - sqrt(d + e*x)) - 12*
a*c*d**3*(d**2/sqrt(d + e*x) + 2*d*sqrt(d + e*x) - (d + e*x)**(3/2)/3) - 12*a*c*d**2*(-d**3/sqrt(d + e*x) - 3*
d**2*sqrt(d + e*x) + d*(d + e*x)**(3/2) - (d + e*x)**(5/2)/5) - 4*a*c*d*(d**4/sqrt(d + e*x) + 4*d**3*sqrt(d +
e*x) - 2*d**2*(d + e*x)**(3/2) + 4*d*(d + e*x)**(5/2)/5 - (d + e*x)**(7/2)/7) - 2*c**2*d**5*(d**2/sqrt(d + e*x
) + 2*d*sqrt(d + e*x) - (d + e*x)**(3/2)/3)/e**2 - 6*c**2*d**4*(-d**3/sqrt(d + e*x) - 3*d**2*sqrt(d + e*x) + d
*(d + e*x)**(3/2) - (d + e*x)**(5/2)/5)/e**2 - 6*c**2*d**3*(d**4/sqrt(d + e*x) + 4*d**3*sqrt(d + e*x) - 2*d**2
*(d + e*x)**(3/2) + 4*d*(d + e*x)**(5/2)/5 - (d + e*x)**(7/2)/7)/e**2 - 2*c**2*d**2*(-d**5/sqrt(d + e*x) - 5*d
**4*sqrt(d + e*x) + 10*d**3*(d + e*x)**(3/2)/3 - 2*d**2*(d + e*x)**(5/2) + 5*d*(d + e*x)**(7/2)/7 - (d + e*x)*
*(9/2)/9)/e**2)/e, Ne(e, 0)), (c**2*d**(7/2)*x**3/3, True))

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 388 vs. \(2 (69) = 138\).
time = 2.02, size = 388, normalized size = 4.67 \begin {gather*} \frac {2}{315} \, {\left (21 \, {\left (3 \, {\left (x e + d\right )}^{\frac {5}{2}} - 10 \, {\left (x e + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {x e + d} d^{2}\right )} c^{2} d^{4} e^{\left (-2\right )} + 18 \, {\left (5 \, {\left (x e + d\right )}^{\frac {7}{2}} - 21 \, {\left (x e + d\right )}^{\frac {5}{2}} d + 35 \, {\left (x e + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {x e + d} d^{3}\right )} c^{2} d^{3} e^{\left (-2\right )} + 210 \, {\left ({\left (x e + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {x e + d} d\right )} a c d^{3} + {\left (35 \, {\left (x e + d\right )}^{\frac {9}{2}} - 180 \, {\left (x e + d\right )}^{\frac {7}{2}} d + 378 \, {\left (x e + d\right )}^{\frac {5}{2}} d^{2} - 420 \, {\left (x e + d\right )}^{\frac {3}{2}} d^{3} + 315 \, \sqrt {x e + d} d^{4}\right )} c^{2} d^{2} e^{\left (-2\right )} + 315 \, \sqrt {x e + d} a^{2} d^{2} e^{2} + 84 \, {\left (3 \, {\left (x e + d\right )}^{\frac {5}{2}} - 10 \, {\left (x e + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {x e + d} d^{2}\right )} a c d^{2} + 210 \, {\left ({\left (x e + d\right )}^{\frac {3}{2}} - 3 \, \sqrt {x e + d} d\right )} a^{2} d e^{2} + 18 \, {\left (5 \, {\left (x e + d\right )}^{\frac {7}{2}} - 21 \, {\left (x e + d\right )}^{\frac {5}{2}} d + 35 \, {\left (x e + d\right )}^{\frac {3}{2}} d^{2} - 35 \, \sqrt {x e + d} d^{3}\right )} a c d + 21 \, {\left (3 \, {\left (x e + d\right )}^{\frac {5}{2}} - 10 \, {\left (x e + d\right )}^{\frac {3}{2}} d + 15 \, \sqrt {x e + d} d^{2}\right )} a^{2} e^{2}\right )} e^{\left (-1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^2/(e*x+d)^(1/2),x, algorithm="giac")

[Out]

2/315*(21*(3*(x*e + d)^(5/2) - 10*(x*e + d)^(3/2)*d + 15*sqrt(x*e + d)*d^2)*c^2*d^4*e^(-2) + 18*(5*(x*e + d)^(
7/2) - 21*(x*e + d)^(5/2)*d + 35*(x*e + d)^(3/2)*d^2 - 35*sqrt(x*e + d)*d^3)*c^2*d^3*e^(-2) + 210*((x*e + d)^(
3/2) - 3*sqrt(x*e + d)*d)*a*c*d^3 + (35*(x*e + d)^(9/2) - 180*(x*e + d)^(7/2)*d + 378*(x*e + d)^(5/2)*d^2 - 42
0*(x*e + d)^(3/2)*d^3 + 315*sqrt(x*e + d)*d^4)*c^2*d^2*e^(-2) + 315*sqrt(x*e + d)*a^2*d^2*e^2 + 84*(3*(x*e + d
)^(5/2) - 10*(x*e + d)^(3/2)*d + 15*sqrt(x*e + d)*d^2)*a*c*d^2 + 210*((x*e + d)^(3/2) - 3*sqrt(x*e + d)*d)*a^2
*d*e^2 + 18*(5*(x*e + d)^(7/2) - 21*(x*e + d)^(5/2)*d + 35*(x*e + d)^(3/2)*d^2 - 35*sqrt(x*e + d)*d^3)*a*c*d +
 21*(3*(x*e + d)^(5/2) - 10*(x*e + d)^(3/2)*d + 15*sqrt(x*e + d)*d^2)*a^2*e^2)*e^(-1)

________________________________________________________________________________________

Mupad [B]
time = 0.06, size = 80, normalized size = 0.96 \begin {gather*} \frac {2\,{\left (d+e\,x\right )}^{5/2}\,\left (63\,a^2\,e^4+63\,c^2\,d^4+35\,c^2\,d^2\,{\left (d+e\,x\right )}^2-90\,c^2\,d^3\,\left (d+e\,x\right )-126\,a\,c\,d^2\,e^2+90\,a\,c\,d\,e^2\,\left (d+e\,x\right )\right )}{315\,e^3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^2/(d + e*x)^(1/2),x)

[Out]

(2*(d + e*x)^(5/2)*(63*a^2*e^4 + 63*c^2*d^4 + 35*c^2*d^2*(d + e*x)^2 - 90*c^2*d^3*(d + e*x) - 126*a*c*d^2*e^2
+ 90*a*c*d*e^2*(d + e*x)))/(315*e^3)

________________________________________________________________________________________